- Best
Available
Copy

AD-782 658

AN ENCIPHERING MODULE FOR MULTICS

G. Gordon Benedict

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

July 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

P

e {E

{17 Key Words and Document Analysis. 17a. Descriptors

BIBLIOGRAPHIC DATA |1- Report No. 2

SHEET MAC m-. 50 3#‘Biel?'sjc$|(na\.‘3‘8

4. Titlc and Subtitle ! 5. Report Datc ;. Issued
An Enciphering Module for Multics July 1974
6.
7. Author(s) 8. Performing Organization Rojpe.
G. Gordon Benedict No. MAC TM- 50
9. Performing Otganization Name and Address 10. Project ‘Task Work Unit No.
PROJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY: | TR P
545 Technology Square, Cambridge, Massachusetts 02139
NOOO14-70-A-0362-0006
12. Sponsoring Organization Name and Address 13, Type of Report & Period
Office of Naval Research Covered® — Interim
Department of the Navy Scientific Report
Information Systems Program 4.

Arlington, Va 22217

15. Supplementary Notes

S.B. Thesis, Department of Electrical Engineering, June 1974
16. Abstracts

Recently IBM Corporation has declassified an algorithm for encryption usable for

computer-to-computer or computer-to-terminal communications. Their algorithm was
implemented in a hardware device called Lucifer. A sof%ware implementation oi
Lucifer for Multics 1is described. A proof of the algorithm's reversibility for
deciphering is provided. A special hand-coded (assembly language) version of
Lucifer is described whose goal is to attain performance as close as possible to
that of the hardware device. Performance measurements of this program are given.
Questions addressed are: How complex is it to implement an algorithm in software

designed primarily for digital hardware? Can such a program perform well enough for

use in the I/0 system of a large time-sharing
system?

17b. ldentifiers /Open-Ended Terms

17c. COSATI Field/Group

e T T T O ARDCL T

18. Availability Statement 9. :u uru)_y Class (Th 3 No. of Pagrr
vport

Approved for Public Release; e
pistribution Unlimited

L Security € lass (Thas

'.Igl
| UNC LASSEELED s
BTN R TIS- A% (REV. 3-72) s 3 ()

THIS FORM MAY BE REPRODUC ED

MAC TECHNICAL MEMORANDUM 50

AN ENCIPHERING MODULE FOR MULTICS

G. Gordon Benedict

July, 1974

This research was performed in the Computer Systems Research

N Division of Project MAC, an M.I.[. Interdepartmental Laboratory,
and was sponsored in part by the Advanced Researcn Projects
Agency (ARPA) of the Department of Defense under ARPA Order
No. 2095 which was monitored by Office of Naval Research
Contract No. N00014-70-A-0362-0006; in part by the Air Force
Information Systems Technology Applications Office and by ARPA

under ARPA Order No. 2641: and in part by Honeywell Information
Systems, Inc.

This Technical Memorandum reproduces a June, 1974, M.I.T.

Electrical kEngineering Department S. B. Thesis of the same
title.

B TNEYELY em——

An Lnciphering Module for !Multics paqge 2

ABSTRACT

Recentlv IBM Corporation has declassified an alecorithn
for encryption usable for cormputer-to-cormnuter or
computer-to-terminal communications. Their algorithm was
implemented in a hardware device called Lucifer. A software
implementation of Lucifer for Multics is described. A proof
of the algorithm's reversibility for deciphering is
provided. A special hand=-coded (assembly languaqe) version
of ILucifer is described whose goal is to attain perrormance
as close as possible to that of the hardware device.
Performance measurenents of this program are given,
Questions addressed are: Illow complex is it to implement an
aitaorithm in softwvare designed primarilvy for digital
hardware? Can such a program perform well enouah for use in

the I/0 system of a large time-sharing svstem?

Author: G. Gordon Benedict

Thesis Supervisor: Prof, Jerome I, Saltzer

An Enciphering Module for Multics

Title Page
Abstract
Contents
Figures
Tables
Overview
Section 1,

Section 2,

Section 3,
Section 4,
Section 5,
Appendix A,
Appendix B,
Apperndix C,

Appendix D,

CONTENTS

Introduction to Enciphering
Enciphering Algorithms ard Lucifer

in Particular

A Proof of Lucifer's Reversibility
The Multics Software Implementation
Timing Measurements and Conclusions
Operation of the Lucifer Hardware
The PL/I Implementation

The Assembly Language Implementation

Introduction to Multics Assembler

Bibliography

12

17
19
22
24
34
43
62
68

paae 3

An Enciphering Module for Multics

Figure
Figure
Figure
rFigure
Figure
Figure
I'igure

Figure

FIGURES

Flowchart

Block Diagram

Bit Addresses in Registers
Hardware Schematic

Lxploded Key Bit Assignment
Key Bit Assignment
Convolution Registers

Postrotation Convolution Registers

15
25
26
44
45
47

48

page 4

An Enciphering Module for Multics

TABLES

Table 1, Key Byte Access Schedule

Table 2, Four=bit Permutations

Table 3, Convolution Register Rotation Counts

]

\

\
§

An Enciphering Module for Multics page 6

OVERVIEW

This thesis examines the enciphering alcorithm recently
released by IBM, Lucifer. This algorithm is described as a
hardware mechanism in "The Design of Lucifer, a
Cryptographic Device for Data Communications", by J. Lynn
Smith; this was the primary source document.

A proof of Lucifer's reversibility is given, that it
will in fact correctly decipher its previously=-output
ciphertext when provided with the same key used for
enciphering., Two software implementations are described and
their performance measured.

This paper is divided into five sections and four
appendices. "Introduction to Enciphering" briefly explains
the wuses of enciphering in computer-to-computer and
computer-to-terminal communication as a security
enhancement. "Enciphering Algorithms and Lucifer in
Particular" lists some criteria for a good computer-oriented
cipher, The general operation of Lucifer is depicted
without much detail. Sufficient detail is however given for

understanding of "A Simple Proof of Lucifer's

i

% Reversibility", This section provides an informal proof
-hat Lucifer works in that it correctly deciphers its own
ciphertext. "The Multics Softweare Implemertation”

demonstrates how to use the encipherinag proorams. The final

section, "Timing and Conclusions", presents performance

An Enciphering Module for Multics page 7

! measurements of a PL/I and a Multics assembly language
version of Lucifer, Appendix A, "Operation of the Lucifer
Hardware", details the operation of the hardware device
described by Smith. Appendix B, "The PL/I Implementation",
de:ails a software version in the PL/I langucge designed to
simulate closely the Lucifer hardware in its operation and
be readable and exportable, Appendix , "The Assembly
Language Implementation®, details a version of Lucifer
optimized for execution time. For those readers unfamiliar

with the Multics hardware, "An 1J.troduction to Multics

Assembler" briefly explains those features of the Honeywell

model 6180 processor used by Lucifer,

An Enciphering Module for Multics page 8

INTRODUCTION TO ENCIPHERING

Much attention has been paid recently to computer and
data security. Computer security consists of requleting the
use of computer facilities to only those people or those
tasks authorized to use them. This has been attempted by
such mechanismns as passwords, protection rings, and
privileged instructions. Data security is becoming more
important with the advent of government and corporate
personal-data files. ‘This problem is magnified 1if the
computer system is available to many users via
telecommunications. Given the above facilities for
regulating computer facility use, access contro’ is one
mechanism that is available for preventing unauthorized
access to data files. However, this mechanism fails when
data is transmitted over telephone lines, radio 1links, or
physical (mail or courier) shipments. Such communications
are easily tapped without the legitimite wuser's knowledage,
except for the case of a courier. Even more insidious than
the traditional reading of sensitive data is the insertion
of spurious data designed to confuse or misdirect the
operation of a system, One mechanism for minimizing this
problem is enciphering that data, which protects the data
itself rather than the medium of transmitting the data.

Enciphering is a process whereby transformations are

made on the message (cleartext), wusually on a bit or

An Enciphering Module for Multics page 9

character level., If the algorithm is known the cipher may
be breakable by analyzing the ciphertext, particularly if
sample cleartext for some of the ciphertext is available.
Since an enciphering algorithm must be reversible to be
useful, a key known by Loth the message oriqinator and the
intended receiver is also used. Thus if the key is
intercepted or deduced the cipher is now cracked. The
essence of successful cryptology 1is in devising an
enciphering algorithm which is not possible to crack in the

time-span of the message's useful.iess, and in keeping the

Key secret,

Enciphering helps in preventing insertion of spurious

uata to confuse a computer, as well as preventing reading of

secret data. This is because a random message inserted onto

the

commnunication link will probably decipher to

unrecognizable garbage. The algorithm implemented in this
paper is so constructed that if one bit is changed in a
legitimate encipherad message, the deciphered text will

almost

certainly be unrecoqgnizable. This prevents the form

of

interference wierein a saboteur records (taps) the

ciphertext, changes some bits randomly without even

understanding the message, and inserts the text onto the

telephone lines. Unrecognizable text can usuallv be

re jected by the computer., There still remains the problem

of the saboteur who records the ciphertext and replays it

unchanged later. This can le extremely damaginag to

An Enciphering Module for Multics page 10

unrepeatable or irreversible processes, A method of
avoiding this problem is message chaining, whereby a part of
the previous data exchange 1is enciphered in this data
exchange, as a verification fieid. Thus the same message
replayed tomorrow would contain an out-of-cate verification
field and be reiected., The operation of such a system is
discussed at length in Smith's paper.

Enciphering can also be used for computer-to-terminal
communications. The terminal would contain a hardware
deciphering module; the algorithm described here was
designed with this purpose in mind. The user could have his
key on a magnetic card, or he could ¢type it in on the
terminal. The computer would contain a central file of all
users' keys and a software or hardware version of the
enciphering module.

Enciphering can add some security to online files
against the possibility of random hardware or software
failures or physical stealing of backup tapes, disk packs,
etc. Enciphering in this application merelvy adds another
dimension of security.

This paper details an enciphering algorithm developed
by Feistel and Smith of 1IBM for computer-to-terminal
communications., A software version has been prepared,
intended to be used as part of the innut/output software or

the network interface of Multics. A command to encipher and

decipher online segments has also been written. A proof of

An Enciphering Module for Multics nage 11

the algorithm's reversibility is also given; this was hinted

at but not proved in the Smith and Feistel papers.

R S e IS

e

!
|

An Enciphering Module for Multics page 12

ENCIPHERING ALGORITHMS AND LUCIFER IN PARTICULAR

There are several desiderata in the design of an
enciphering algorithm, One is needed which is easily
implemented in hardware, yet would provide a great measure
of security against cryptanalysts -- especially against
those armed with computers of their own.

Many traditional algorithms have operated by performing
one-for-one character substitutions based on the key. For
example, the "Vignere-Vernam" ciphers use a square array of
characters. To encipher, each character of cleartext is
used as a column index into this array; the character of the
key corresponding to this character of cleartext (i.e., the
nth character of the key corresponds with the nth character
of cleartext) is used as a row index. The character at the
intersection is the corresponding ciphertext character. The
key is repeated as many times as necessary to exhaust all
characters of cleartext. The square array can contain
essentially any characters. These ciphers' weakness arise
from the key repitition and the simple substitution of a
very short message element (a character). Such ciphers are
subject to frequency analysis, particularly if a sample of
cleartext is available, This oversimplified account is
drawn from "Cryptology, the Computer, and Data Privacy" by
M. B. Girdansky.

The algorithm developed by Smith and Feistel uses the

An Enciphering Module for Multics page 13

traditional enciphering mechanisms of substitution of
strings and modulo arithmetic on strinas, However, by
repeated cycles, esse:ntially a substitution is performed on
not small characters but 128-bit blocks. Thus such methods
as frequency analysis require computation time on the order
of the lifetime of the universe.

This algorithm, called Lucifer, has the added
advantages of simple hardware implementation with
shift-registers and easy reversibility. A general
description of the algorithm follows and then a proof of
its reversibility.

The basic transformations used are one- to-one manpings
and exclusive-ors (mod-2 addition). The input is divided
into equal-sized blocks; each block is processed completely
independently of the others. The following description
refers to oune block only. It 1is thus desirable from a
cryptographic point of view tn use as large a block size as
possible, since the more bits which affect a given bit of
ciphertext, the harder will be the job of the crvptanalyst,
As mentioned before, a basic weakness in many ciphers is the
small block size.

A block is broken into the tonp half and the bot.cm
half, Without changing the bottom half, it is broken into
easily manipulable units called bytes. Lach byte undergoes
one of two one-to-one transformations depending upon a hit

of the key. This collection of transformed bytes is

An Enciphering Module for Multics page 14

referred to as confused bytes, and the operation is referred
to as confusion. Next, each bit of the confused bytes is
modulo-2 summed with a different bLit of the kev. This
operation is referred to as interruption. Now these bytes
are modulo-2 summed with the top half of the cleartext, the
block previously unused. This is called diffusion. The two
halves are swapped; this operation is called interchange.
Sixteen such cycles occur., One complete
confusion-interruption-diffusion cycle 1is called a CID
cycle. The schedule for acceses.ng key bits is so arranged
that every key bit is wused for both controlling the
confusion transformation and for interruption, The

interchange operation occurs on every cycle except the last.

An Enciphering Module for Muliics

Figqure 1: Flowchart

¢

confusion
Y
mf{v’rur"hoﬂ

4

¥
J.{fus{oﬂ

;nf&rckonse

Figure 1 shows a flowchart of the operat'on. Thus the

algorithm consists of:

Figure 2: Block Diaqram

CIDcycle [intecchange— 2 74/ CTD cycle
0 0 n

The only dif ference hetween enciphering and deciphering
is the order in which the key bits are accessed. Within CID

cycle n during deciphering, key bits are accessed in the

An Enciphering Module for Multics page 16

same order as in CID cycle 15 - n in enciphering. These
operations, explained in general here, are fully detailed in
Appendix A - Operation of the Lucifer Hardware.

This leads to a simple proof of reversibility, as

explained in the next section.

An Enciphering Module for Multics page 17

A PROOF OF LUCIFER'S REVERSIBILITY

Assume there are n + 1 CID cycles and thus n
interchanges. Call output of the CID cycle n - 1 MO||M)
(where MO is the first half of the message, Ml is the second
half). Call the output of cycle n C0||C1. The double
vertical bar represents concatenation, MO|| M1 is
transformed in the following manner by cycle n, which is the
last cycle (the first is numbered 0), Confusion: A
transformation ¥ (Ml) 1is applied. Which transformation
depends on a bit of the key (one for each byte of Ml) but
since the same key bits will be accessed for the same byte
positions during deciphering the specific transformations
selected is irrelevent, as long as they are all one-to-one.
Interruption: T (Ml) is exclusive-ored with specific key
bits KI. Diifusion: T (l41) + KI is exclusive-ored with the
top nalf. The total message is thus T (Ml) + KI + MO || M1,
Renember that on cycle n no interchange occurs, On
deciphering, this output will be fed into decipher cvcle 0,
which is the same as encipher cycle n. Since this cycle is
exactly the same as the last encipher cycle, confusion and
interruption will generate T (Ml) + KI just as before. When
this is exclusive-ored with the top half consisting of T
(M1) + KI + MO the original MO will be regenerated.

Since the interchange before encipher cycle n occurs

after decipher cycle 0, the output from the interchange will

An Enciphering Module for Multics page 18

also match, Thus the entire n - 1 interchange and n CID for
enciplher is equivalent to the 0 CID and 0 interchange.
Thus these cycles rcan now be effectively stripped off; the
same proof is applied to a Lucifer consisting of n CID
cycles and n - 1 interchanges, Eventually a Lucifer of one
CID cycle and zero interchanges remain; this has alreadv
Leen demonstrated above to be reversible.

In the actual specific operation of Lucifer, the
Jdiffusion operation does not consist of a simple
exclusive-or; instead the bits are permuted in a fixed
fashion before diffusion. This does not affect the
reversibility, since the ciphertext will undergo the same
permutation and thus each cycle will regenerate the input of
the corresponding encipher cycle. However, this permutation
is necessary for tlie cipher to be difficult to break, It
ensures that small differences, say a one-bit change, in a
given message block will propagate throughout all the bits
of that block of ciphertext, Each bit of cleartext

potentially affects every bit of ciphertext, within a

128-bit block.

An Enciphering Module for Multics page 19

THE MULTICS SOFTWARE IMPLEMENTATION

Two programs were written as implementations of the IDB!
hardware versions of Lucifer. One is a s*raightforward PL/I
program which manipulates the bits in essentially the same
fashion the hardware does. The other is a Multics assembly
language program optimized for speed of execution. Details
and 1listings of each may be found in the appendices,
Instructions on using them are given here.

First, a key must be supplied. This is done by calling
the set_key entry:

declare lucifer_$set_key entry (bit (128));
call lucifer $set key (key):

This entry saves the key in internal static. This key
will be used for all future enciphering and deciphering
until set key is called again.

To encipher:

declare lucifer_ $encipher entry (dimension (*)

bit (128), dimension (*) bit (128), fixed binary precision
call lucifer_Sencipher (cleartext, ciphertext,
The packed bit array, cleartext, is enciphered and

deposited in the equal-sized arravy ciphertext. The code

argument will be set to 2zero unless the dimensions of

cleartext and ciphertext do not agree, in which case code

An Enciphering Module for Multics page 20

will be set to one and the enciphering not performed, The
ciphertext and cleartext may be the same variable,

To decipher:

call 1lucifer_$decipher (ciphertext, cleartext,
code) ;

This entry is declared the same as encipher, and its
operation is similar,

One problem with this implementation is that Lucifer
requires a 128-bit block to encipher each 128-bit block of
the cleartext. If the cleartext is not a multiple of 123
bits the last Dblock could be padded with zeroes, but the
output ciphertext corresponding to this block cannot be
truncated. If it is information will be lost and it will
not be deciphered correctly. This is because on decipher
the truncated block will be padded to 128 bits (with zeroes,
presumably) which is not identical to the original output of
encipher before truncation. Therefore the primitive
subroutines lucifer_ $encipher and lucifer_$decirher require
data to be passed in 128-bit blocks.

To make this more palatable to Multics users (to whom
data tends to come in multiples of 9-bit characters or
36-bit words anyway) a command has been written to translate
an entire segment, To set the key, type:

set_key -key-

where =-key- will be padded or truncated to 128 bits and is

an octal string.

An Enciphering Module for Multics page 21

To encipher a segment, type:
encipher -cleartext- =-ciphertext-
The segment whose relative pathname is =-cleartext- will be
enciphered. If the optional argument - ciphertext- is not
given the original segment will be overwritten; otherwise
the ciphertext will be written onto the segment named
-ciphertext-.

The input will be padded to a mod 128 bit length with
Zeroes, and the output segment will be equal in length.
Note that no additional pages can e"er be required by this
padding, since a page is 36*1024 bits long, a multiple of
128,

To decipher, type:

decipher ~-ciph-rtext- -cleartext-
This command operates in the same way as encipher. Since
the ciphertext segment must be a multiple of 128 bits long,
exactly as produced by encipher, the output deciphered text
will be exactly as long. This is because decipher has no
way of knowing how long the original was. This can damage
standard object segments which have significant words
expected to be found at the end of the segment. Note that a

better version of this command would encipher the original

cleartext length into the ciphertext segment.

Ar Enciphering Module for Multics page 22

TIMING MEASUREMENTS AND CONCLUSIONS

One of the important questions addressed by this paner
is "Is it possible to take an algorithm designed for easy
hardware implementation and efficiently ‘ranslatc it to
software?". Performance measurements by Feistel show that
the Lucifer hardwar: module enciphered a 128-bit block in
about 165 microseconds. A version written in 360 assembly
langugage for the 360/67 1>quired about 9 milliseconds. The
current Multics hardware, thc Honeywell model 6180, executes
instructions at approximately the same rate as the IBM
360/67. The PL/I1 version, as expected, was extremely slow
and required 10.4 seconds to encipher 72 blocks of 128 bhits
each, or 144 milliseconds/block. The assembly language
version required .4 seconds/72 blocks, or 5.5
milliseconds/block. Multiplying by ten the number of blocks
passed to lucifer_ did not substantially reduce the
time/block, suggesting that 5.5 milliseconds represents real
computation and not overhead. Since Multics characters are
f nine bits long, Lucifer requires 5.5 * (9/128) = 390
microseconds per character enciphered. Currentlv the
Multics I/0 system requires about 100 microseconds per
character for its processing; thus if Jucifer were used for

all I/0 a severe performance degradation could occur,

* liowever this speed probably suffices for the occasional use

to which it might be put.

Aa Enciphering Module for Multics page 23

There are some possibilities for further speed-unp of
the assembly language version; this is discussed in Appendix
C.

An Enciphering Module for Multics page 24

APPENDIX A - OPERATION OF THE LUCIFER HARDWARE

This appendix explains the details of the operation of
Lucifer as it was originally designed, as a hardware device.
This material is drawn from J. Lynn Smith's "The Design of
Lucifer, a Cryptograrhic Device for Data Communications".

A copy of the PL/I program which implements the
algorithm, duplicating very closely the exact bit flows
within the hardware, is shown and explained in Appendix B.

Several cautions must be made in reading the hardware
diagram given in figure 4. Individual bits of a given byte
are arrayed vertically across registers; bytes are numbered
right-to-left, bits of a byte top-to-bottom, Thus each
vertical column below represents one byte of eight bits.
Therefore if the bytes are adjacent (0, l, 2...etc) the
storage order in memory (in a two-dimensional array) is
according to the ordered pairs in each bit position shown

below.

An Enciphering Module for Multics

Figure 3: Bit Addresses in Registers

7 6 5 4 3 2 1 0y
7,0(6,0/5,0/4,0|[3,0]2,0]1,0}0,0
7,1]16,1}5,1]4,1|3,1]2,1}1.1{0,1
7,216,2|5,214,213,22,2[1,2] 4,2
7.3|6,3|5,3|4,3}3,3|2,3]1,3]0,3
7,41 6,4|5,4|14,4|13,4(12,4|1,4}0,4
7,516,5|5,5| 4,5|(3,5|2,5|1,5}]0,5
7,6 [6,6 |5,6]4,6|3,6[2,6[1,6[0,6
7,716,7}15,71 4,7 3,7 711,71 0,7

Xe

.

page 25

An Enciphering Module for Multics

ECIsTERS

K

r

Cuvit

¢ N

e

FUNER

CeN

Figure 4: Hardware Schematic

page

JAS 193y OV IND
NOLLYW YOI SNY Y]

L
L

N e 1 M
o~ of | -4 F:fg M |3 !
y
li
-
foo
|
g- \
L ||
—_— _Is-._a
s M e LIRS
ololH
o -
(Vg w
o -
/‘
_ET]
:;r:.rrL,r,T:,:{;i:

CASTERS

26

An Enciphering Module for Multics page 27

Hote also that the author assumed that high~order bhits
are transmitted first; the Smith paper does not specify
this. Thus bits are first loaded into position 0 of the
convolution registers (top half), then porition 1, 2 etc. on
to position 0 of the source registers (bottom half).

Cach of the registers shown is connected as a circular
shift~-register. In addition, bits can be shifted from the
convolution registers to the source registers and back for
the interchange operation.

A complete enciphering or decir.uering operation for one
128-bit block consists of sixteen
confusion-interruption-dif fusion (CID) cycles, with an
interchange cycle in between each CID cvcle for a total of
15 interchange cycles.

At the start of a CID cycle, byte 0 of the key is
copied into the transformation-control register. This
register will supply eight bits for controlling the
confusion operation; each bit will correspond with one byte
of the source registers.

A CID cycle consists of eight shifts of the source,
convolution, and transformation-control register (TCR). The
TCR shifts vertically upward; other registers rotate
horizontally, byte n going to byte mod (n - 1, 8).

An individual shift of a CID cycle occurs as follows.
Byte 0 is taken from the source registers. It flows into

the confusion box along with bit 0 of the TCRP, A one-to-one

An Enciphering Module for Multics page 28

transformation is applied to this byte, according to the bit
from the TCR. The output from the confusion box is an
eight-bit confused byte. Each bit of the confused byte is
exclusive-ored with some bit of the convolution registers;
note that no two bit positions are in the same byte. Each
of these result bits is exclusive-ored with some bit of the
rightmost byte of the key; this constitutes the interruption
function. The result of this operation is stored in the bit
position of the convolution registers to the right of the
pair of exclusive-or gates. Note that diffusion occurs
before interruption, but this is immaterial since mod 2
addition is commutative. As the result bit is stored in the
convolution registers, the convolution registers, source
registers, and TCR undergo a shift. Thus the bit that
previously was to the right of the exclusive-or gates in the
convolution registers is not destroyed; it is shifted right,
and the result of diffusion occupies its old position.

These shifts are executed eight times for each CID
cycle. In addition, during each shift the 1l6-byte key
registers each rotate right one position with one exception:
during the last shift of each CID cycle the kev register is
not rotated during encipher; during decipher the key
registers rotate two positions after the last shift. Thus
seven key shifts occur per CID cycle on encipher and nine

key shifts occur per CID cycle on decipher. This, coupled

with an initial shift of nine positions before processing

An Enciphering Module for Multics page 29

any blocks, constitutes the only difference between
enciphering and deciphering.

i When eight shifts of one CID cycle are complete, the
soufce registers will be back to their original position.
The convolution registers are also restored except that each
of its 64 bits has been exclusive~-ored with exactly one key
bit exclusive-ored with exactly one source bit. This is
guaranteed by the placing of the gates in a different byte
position for each bit of the confused byte. The key
registers have been rotated eitliier seven times (for
encipher) or nine times (for decipher). The TCR has yielded
all its bits. An interchange cycle now occurs, unless this
is the 1last CID cycle. This consists of connecting
positions 0 and 7 of the source registers with positions 7
and 0 of the convolution registers, respectively; eiaht
shifts now occur. This merely swaps the contents of the
registers.

Now the next CID cycle begins. A new kecy byte is
fetched into the TCR. On CID cycle 1 this will be byte 7
for encipher and byte 2 for decipher of the original key.

It is important that the key bits be accessed in the
reverse order (between CID cycles) when deciphering as
compared to enciphering, but in the same order within each
CID cycle. This is to ensure reversibility, as explained
earlier. In addition, for cryptographic strength each bit

of the key should be accessed ar equal number of times:

An Enciphering Module for Multics page 30

eight times for interruption and once for transformation
control of one byte of the source registers. The following
method of accessing key bytes was thus devised, If there is
to be an encipher, the key is initialized by loading it into
the key registers. If a decipher is to be performed, the
key registers are then rotated so that the first CID cycle
will use bytes 9 to 0 rather than 0 to 7. After each CID

cycle there will be no key shifts on encipher, but there

will be two shifts during decipher., This will cause the key

An Enciphering Module for Multics page 31

bytes to be accessed as shown in table 1.

Table 1: Key Byte Access Schedule

CID cycle encipher decipher
0 01 2 3 4 5 6 7 9 10 11 12 13 14 15 O
1 7 8 910 11 12 13 14 2 3 4 5 6 7 8 9

2 1415 0 1 2 3 4 5 11 12 13 1415 0 1 2
3 5 6 7 8 910 11 12 4 5 6 7 8 910 11
4 12131415 0 1 2 3 131415 0 1 2 3 4

6 10 11 12 13 1415 0 1 15 0 1 2 3 4 5 6

10 6 7 8 910 11 12 13 3 4

(&,
(<))
~
[e o]
(Vo)

10
11 131415 0 1 2 3 4 12131415 0 1 2 3
12 4 5 6 7 8 910 11 5 6 7 8 910 11 12
13 11 12 13 1415 0 1 2 1415 0 1 2 3 4 5
14 2 3 4 5 6 7 8 9 7 8 910 11 12 13 14
15 9 10 11 12 13 14 15 O 0 1 2 3 4 5 6 7

Tine byte of the key used for transformation control is
in the left-hand column. Note that the decipher schedule is
the same as the encipher schedule read upsidedown, but
within a CID cycle, read horizontally, bytes are accessed in

the same order. Also note that the key registers will be so

positioned after sixteen CID cycles ready for the next

-—r

An Encipherina Module for Multics page 32

block: in byte 0 for encipher, byte 9 for decipher.

The exact nature of the confusion operation has not
been explained yet. It is not important particularly what
it 1is, as long as it is one-to-cne and sufficiently random.
It works as follows, Each byte to be confused (from the
source registers) is split into two four-bit halves., If the
key bit from the TCR for this byte is 1, the two halves are
exchanged; otherwise no operation is performed. WNext, each
four-bit half undergoes a one-to=-one mapping. The method in
hardware used decoders, encoders, and permuted wires, but
effectively a table look-up was done to associate with each
of the sixteen bit combinations a unique four-bit
replacement, The ¢two mappings for the two halves are
different; the one for the top half is cal.ei 50 and the one
for the bottom half is Sl. Finally an B8-bit byte is
generated by permuting the eight wires from these two
mapping networks. The result of this entire confusion
operation (and the way it is done in the software versions)
is to consider the key bit concatenated with the source byte
as a nine-bit index into a 512 element table. Each element

is an eight-bit confused byte, This 1is explained in

Appendix B, the PL/I implementation.,

An Enciphering Module for Multics page 33

Table 2: Four-bit Permutations

input SO sl
0000 1100 0111
0001 1111 0010
0010 0111 1110
0011 1010 1001
0100 1110 0011
0101 1101 1011
0110 1011 0000
0111 0000 0l00
1000 0010 1100
1001 0110 1101
1010 0011 0001
1011 ulnl 1010
1100 1001 0110
1101 0100 1111
1110 0l01 1000

1111 1000 0101

An Enciphering Module for Multics page 34

APPENDIX B - THE PL/I IMPLEMENTATION

The PL/I implerentation is very similar to the hardware
design. liowever, instead of rotating data toward the low
address end of each register, index values into fixed arrays
are decremented and wrapped around to the high order end.
Note very carefully that each byte shown in the hardware
diagram, those bits arrayed vertically, are rows of
two-dimensional arrays. Thus ..f a conventional PL/I array
is printed it will appear transposed as compared to the map
of the regyisters. For consistencv w.thin this document all
arrays will be transposed from the conventional order so
that they appear identical to the hardware bit orderings.

Instead of doing 15 interchanges (unlike most other
operations, a real movement of data occurs on interchange)
16 are done. This last interchange is undone by copying the
gsource registers first into the result block followed by the
convolution registers. This is to avoid checking within the
loop for the special case of the last execution. Similarly
rather than skipping a key-shift cycle on encipher and
performing an extra one on decipher each CID cycle, eight
increments of the key index interruption_row are always
performed. After a CID cycle is complete, a fixup variable
either_one_or minus_one is added modulo 16 to

interruption_row; this variable is -1 for encipher and 1 for

decipher,

An Enciphering Module for Multics page 35

The program operates as follows. It copies the first
half of a given 128-bit block into the
convolution_registers; the second half js copied into
source_registers. The interchange_index loop counts the
CID-interchange cycles, sixteen in number. Within that loon
a CID cycle is performed by assigning interruption_row to
ks_row; interruption_row shows which byte of the kev will
next be used for interruption, ks_row shows which byte will
be used for transformation control., This assignment is the
equivalent of copying the next Lyte of the key into the TCR
at the start of a CID cycle. Now the data_row loops eight
times, once for each byte in source_registers. The entire
confusion operation is implemented by a 512 byte table; the
first half for key bit = 0, the second half for key bit = 1,
Thus the confused byte is found by indexing this table with
the key bit identified by ks_row and data_row concatenated
with the source byte identified by data_row, Now
convolution_index loops eight times, once for each bit in
the confused byte. Note that this is all done in parallel
in the hardware version and in the assembly language version
described in Appendix C. Each bit of the confused byte must
be exclusive-ored with some bit of the key byte identified
by interruption_;ow. Just as the key interruption wires
were permuted in the hardware, so key table tells which bit

of that key byte is supplied for each bit of the confused

byte. This interrupted bit is now exclusive-ored with some

An Enciphering Module for Multics page 36

bit of the convolution registers. The register in which the
bit lies which will be diffused (the one to the right of the
exclusive-or gates) is the one corresponding to the source
register from which the interrupted bit was derived. The
number of this register, the column in the PL/I sense
(althougi* it is horizontal on the diagrams) is therefore
convolution_index. The byte in which this bit lies is given
by a table, convolution_table. These positions rotate right
around the registers, one position for each shift of tihe CID
cycle, once for ecach incrementing nf data_row. Therefore
the correct convolution_table entry for this bit of the
interrupted byte must be mod-8 summed with data_row; this
supplies the byte or rov number of the target bit.

After this byte is complete, interruption_row is
incremented mod 16 to simulate rotating the kev registers
once to the right. Now data_row is incremented to have the
effect of rotating the source, ccnvolution, and
transformation-control registers.

After the eight loops of data_row, interruption_row
must Dbe readjusted to simulate only seven key shifts on
encipher but nine shifts on decipher. As explained before,
a fixup variable either_one_or_minus_one is mod 16 addad to
interruption_row; this fixup variable is set at the entry
points. The two entry points also set the initial
interruption_row, either 0 for encipher or 9 for decipher.

After sixteen loops of interchange_index, sixteen

An Enciphering Module for Multics page 37

CID-interchange pairs have been performed. The block is now
copied into the result field; the source registers are

copied first to undo the effect of the extra interchange

cycle.,

i o e e e e e

s

R

/e S$493516434 ULIIN|UAUUD U, sUlu V] SUU1SUd 11y qd it 8/ (L ¢+ Y) YV|SUdw|p @ 4€3TU0 AN [VAULD QU¥ | Jdp
/s S493S}434 UU|IN|0AULI pUE 9IINUS LU jUULES dUy Al9dow pdSN &/ f(nY) iy 4915 s9d dwel e | 9,
Jo (9344 [) 49Si34dul yu JIWIIY s/ (8) d 9YAY pISNuul Gdv¥ | Jdyp

{hded iy poXiy

/3 dequ |29y duyi [“doyu|dud JUy (- =/ (9U0TSNU W AU BUUT a4l e
/% dUsliyyjp=uv]|iuiddeld] duy pash Asyq ,0 M0l 8/ ‘raudT UuIundaelu|
/% (42ey wdempliy) d1ed Gua SUjEIuvl Sd915 094 UU|IN|UAULY U AUd I iyM s/ fiavdTUU | AN [VAUOD
/s QU BU|A[VAUUD (ylJ 94UV sudilp) 9Ay peSiiaudld ,U Iy 49i4M o/ “XepulTuUu]lln[UAUOD
¢ [V43UUD UV | JRWIUSURA] duy Su|SH Mol Ao U oud JeyM s/ ‘a0l S
1] 2 2 i (] 4 1
/s BUlaUliu MUU 493 |edd UV VAULY JU 9JdIIUS yu nud Jegm s/ ‘avaTeIRY
/e (Gl = u) Se|JAJ daUR UdIJU| SIUNVY s/ ‘Xupu| @eduRyJdelul|) die |29,
/v 4@y US pISSIIUAU HUIIS UL SV 3dgn ./ (9 N¢) UV|S Q940 Adeuly peX |y uv]l[50d 1Xe] 94e | Iy

Ipdue | (2un (g) diy (L ¢ U) dYu|Suva|y
/3 (31%4 UU]) +4315|49d UQ|IN VAUV &/ (549154947 UV | 3N |VAULD
/% (1€ woliuy) 54915 |49 @J4iIVS 94) =/ -wut»m.tunlt&;:cmu w4 | doy

241311y (4354NS
‘sujdls
\.\E
‘poX |y
‘uiv
‘1o
CappR) Ba€ 9y

/® AU V3 $S9|41Ud SU|ddyu|Jdy puUl SUjd94qU]OUd J0y SULIRIR (Y =/

- fuanled
{pue
{pud
(1L T ¢ AuaTelep + AUATSH s 9T ‘AwqTe) JAasyis
/e 9S0USURI]Y 8/ = ([“(+ M9a"Sq ‘(MudTeaey) Aey) 4154NS
[o A9q 2V 3404 Nd4) 9I€dod] e/ ff 91 g = MudTSy Op
/o A4 yu SuUWil U2 Rdyd ededol| s/ g VI @ = MuaTEIRp LVp

1013815 |Qudddd| (G ¢ y) Yu|Sudulp (¢) v Aoy 4€ | J9p
\cmn4;cm:>¢x-\ uﬁgm—vu_xstuctuuac>txlm cuu—uo\

Jo @SN VY Ady JRyM dey il | | |9 "V] pdsh A43Ud Sy4) s/ I(Aewy) @4npIdVLd
Ao 39S

/o IV 3230024 30 UU|S|A|p yodedSey SWEISAS 43INVWLY 943 I¥ L /YZl/y 49 |peudy WOpdOy ‘y Ay 9p0d ALLeIY]
Sl AN PO FAep S wylldUE ¥ dUjdIygudue 43,00 | 94) SIUIWe |Uw| d|NpOW S|yl =/

\..IO-..‘.‘I‘...C‘........C'C.ICI.Illl.....‘....i'....‘.C..'....'....l 8888 2333530308838 058058
. . -
. ‘U ‘SWRISAS UV |IewdUzu|] | [9aAduuy pul .
. AdUUULII| ju 91113 1I5U| SJIISII4IESSE, ‘RLLT () g 4hu0) L
. .

2359338330850 503808838388

‘Cul.......l.....'....C.........C.C’"C..........I..C..l..“‘...‘.. C....C.\

gg 9ded SI1I|NW 4U3 | NPOY Bu|Idyd|du] uy

11 (L “Ie MuaTege, “(Mud™s) Awy) 44s4us) FOXig) 9| 4€1Tuu|Siizu0l

/% GUISNZULL Jes VY P 4¥d Uy Uil VU e/ =GNy peSiizuud
/e DA Yy 49¥9 INUU| LU SIJAy 4 SSUILIU 8/ I Vi g = MuaTRIEY Uy
/3 91940 Yy S|4 U} UU|IUNIIEJU| duy pesn
Ao 50 93Ay 3S41, S| (vdIuul UV dwdusuedy o/ uL(Llcc~uL:LLcuch = LClea
/o SI|4A0 dsueId9luy 9T 8/ 5l V3 T Aq y & X9pu|TdeueyIdRIU| Uy

1(hY ‘53 ¢ UuIISUU IXe2 AravTuTR) 43S4is = (34918 [894T924NUS) Fuials
0N T e W0 3;S0TIXOY ‘AjAu U TR) 435408 = (54935 189470031 | VAULD) dujals

/s 430|y 408 &/ !(4leuv| Beesseu WOPISUUTINGY) I |4M BUT Ay g = UO|I|SULTIXD] O

/o "31594) Aw pde 549U iy 995 S| |BJdp 40U JU
"SOIAD (UU|SH,y p-uu] IUNILIIUf=uu|Siiuuld) 10 9T 431 poSIeUSIITU| SI|IAD QBURGIIIIU] YT
A4 pISSOIVIU S| JU|y qo¥e *(IXe)-deyu ;D du =de9 |2 oy Aew) IXIT INUU} 4O 4204

ILG=BCT U U |3SUVIU A | JUdpuddepu| Lue A|dlviedes 29 SIS |SUVI S 4] "SMO| V3 JUO| Ul¢w s/

fpue
{udnljed
i1 = Jnculm
/e S|4l 1€ aey 8/ fUp U941 41eud|THeEsSew = g¢l v (T CINNTR) wip s
/% dNUU| U] S|y 49 dogwiid w/ ‘el % (1 ‘9iTR) wip = yIeud|TwseSSIL
/3 UO| 98 UV &/ TSN
/% d4jdeqd |09y Ueq 950 0] Aoy yu 93y AISA |y &/ fo = MO UL IUNAARU]

/3 2K (1) 4I¥d AUy BU|dequ|IB, UI4M AD, U QIAy ¥ U|4S 8/ T = GUOTSNU W A0 T RNV 49 v

T(epuvTe anuTe ‘upTe) Aajue

/% wde 35414 3| IX9JAI4U|I PJUU == AdIUQ Sdjaeyd ey »/ Tdoyd oy
/8 9pUY VWU 8/ Iujul vive
/s y 3IA4 S| 951 U] A9y ,0 F3hy Isd |y s/ Y = MUATUOLIUNIIRIUY

/s YAy 15¢| SULNSYL JIyu|dU 9SlIRIuy 714047 U0 | JUIIddedu]
V3 91942 ylJ © 433,¢ pp@ U JUNULE 8/ ‘[- = QUOTSNU JWT 0T U049 4] |9

/s 9p0v 5113235 &/ T(9E) UV [S1I94U AdRu|y pOX|, wpuITR 94e | 29y
f(N8) UV|S|I9AU Adeu|y pIX |3 41UI| P4eSSew P4¥ | D9y
fpRU0 QU (YIeUud|TY0ESSOW) 414 (((3I0TR) dppe) pesey ALADTINO e
((41TR) appe) pesey AAvTu|TR) 9de |29y
/e (494U |I9p du; INDIIED[I) INGIIV4U D &/ fd9douwvary (i) iy (s) U0 SUIu|p (INUTE
/3 (494u|dep 405 IXIIAPGU[I) IXGJACI|D &/ ‘uiTe) 94 | D9y

H(9pudTe “a0Te ‘uiTe) Aajus
/® AdJUd sujdeoyd duv &/ e yd | Jue
{9 4eITU0 SN UL Fpn|duy;,
I(€) UOIS|oudd Advu|y pex|, J[3€1s Ledd93u] (9 ‘¢ ‘1

’

Y
/® JO|JUNIAIIU] duy pasShH Sily Ad4q ,u UV IRIIWIYU SIA[s &/ (L
f(§) UO|S|I94U AdeU|y pax|, |(R4dDIu| “l3eds (0 ‘¢ ‘y ‘s

‘0N s ‘Z) tejatuy
D) UUSUdW Iy I 4eY A9y dde | dep
‘T ¢ %9 ‘L) 1enuy

ug veeu SOPIIN 495 ¥ NpUy SUjadyU | Iuj Uy

s

TA94T3I95 pue
ludnleud
.sC = JdpuY ¥
{pu9
$(5493518047UV|INJUAULY) sUjalS = (%) ‘93 » WU 500 Ixe) ‘ALAVTINUTR) J3syns
1(S49351894T9odNUS) Busals = (49 ‘[¢ wuil;suuT3Ixe] ‘AAvTINOTe) a3syns

{pud
(4915 18uiTULe]Y) WUAIS = ((e) mgcuvhacglgc.ua_c>acuv dujays
I((e) S491S13vaT w0 InuAULD duildls = #) 54915 894" 9IdNIUS dulays
((e) : Lang)) ((+) =)
I((») 34935 ,d94790d1US) ouidls = (4935 |owd" Uu9l) dujals

/® $S493151494 UVIINVAUOY pu€ BUUNUS GenS o/

TI1 TeuUTSHU LTIV WU T de g4 9 . MVIT UV I0Nddelu]) pow
/e [ujas ‘doqu ue, ‘93Ay | A9¥y Ve ‘U94uiIud uv 8/ = AVIT UV IUNUILIYu)

{pul
S04 °T - MUIT UV Jundaelu)) puw
/e wuRUdCURd 3 93Ky AD, IXeu dvy, [pee s/ = lc;lcc_ucsgutuc_

lpu9

(4l lun “(oullug (0 “Le X9pu|™uuyinuauus
“(wWATU0] N jUAULY) $493514947U0) INVALUI) d3squsS
‘AT I+ X9pu| uujin uauud ‘91AGTPUSILULI) J4ISGNS) (uuy
‘(1 ‘L (X9pUTuoInuAuLY) I1¥3 Aoy
‘(ModTuo3dndd93u)) Aoq) 43S4nS) juuy

Tuu 3N vAuLY (MUATU0IN [uAWYD) 34915 14wdTuv 1N UAULY) J3S4nS

2 ([‘I xX3,u,
(s ‘MUaTEIE, . (Xopu]Tuvp snuavul) Y{4€IT Y0 IN | VAUVY) puw
s

/e S493S1434 Lunude I3el04 SUVlisSuUu UU| 3N OAULY
W 0As 4IeY 4uy o/ = AUIT UV INUAULD
/e YAy pIdSN,uud 2V Iy yI¢d IAjUAULD s/ L vl y = xttL_lco.u:pc>LCL Uy

(U ‘b ‘(MvdTeIe.) SJdels i dudTeUdlIus

Un 9seu SN 40, I|Npoy 4uU|d94dduy uy

“9uuiutotug
‘4,000000T0
‘400U L000,,
sJ:Cc:ccOcc:
‘Y TLOUTT00,,
‘4, [T1000100,
M T IR OV
“9u 11600000,
40 LudT Lo,
“4,010001004,
‘4 L00ulLTOy,
‘4, Tu00uTtyy,
‘9 l0uulL0uy,
‘9 luuviuluy
‘qulluvlulon
‘;=~F¢cccnc:
‘quvluvlolu,

LRI) OV
“4ubluu ity

R ITITO AL
‘anlluullTuy,
J.-—.—.CCLH—E-.
z:—ec:—:—c:
‘auluuvouluy,
‘Guluoultuuy,
;:~:c;=noc:
‘an0luvlOouy,
‘9nuluuluiu,
‘Y lCUILIO,
‘apuluvulluy,
‘Guuuuullivy,
‘4 0uu0TTO,
‘U000 Ity
‘9 0v0u0ITUy
~l:¢=C:nOD::
\J..Occccoco:
nl:unccnﬂccz
\L:wmuccnacz
‘4 TTouloduy
AT & I VIV IV
HJ:cncc—noc:
‘.
‘
.

qavlovulouy
C T IE 4 § 4V
4plvvuutlu,
4 [000TO0U
4 LuOuiviuy,
MallovTulv,
EM S O TR

n‘.-QCn ﬂoasﬁ(..
‘4p00ullore,
‘YulOul1000uw
“Gau0ulloot,
‘G lTT1010uy,
‘qullotttot,
‘4, 11110000,
‘qTTJTL00T,,
‘4,01TT0L0u,
‘4. 0TuTIIOT,
‘9 lUITOTLuy
ylo0LTlIL,
‘9ulull000u,
‘quloutlioot,
aulTIT00Tu,
Y llullully,
MaullTQulvy
e loLlore,
qu0ltulou,
Mau00ilIoT,
wlTITOI Ty,
.;:n—cﬁu~—~:
;:ncﬂnccuc:
‘qaI0WLIOTL
‘Ynluliolovn
‘4 L0OITTOL,
"uu 11000y
‘aaululTOUT,
‘G TTI0TTuy,
‘GuuluTTITL,
A TRTIVRN €11 4 4VI%
MpvwOuILITLy,
EMTA S SV QVI
YauOUuIlTOIT,
alzocnunuc::
sJ:Cc:— qﬂbn..
‘9 T1TI0T0u,
Al IulTloT,
‘4 TIT000u.
‘ypllulloot,
“;=c~ﬁ~c—oc:
’

O N N W WY

.
.
s

+ulullToL,
S lulI0tlTuy
‘Yo TOULILIL,,
‘4 lulT000vy
‘aal0uT 00Ty,
‘GalTTIOUTV,
‘aaLTULIOLT,,

.l:ccncccngz
‘4u00ITLulu,
“4,u0T000Vu.
‘a0UTITTIGU,

‘qTTT0uTuu,

I E884 S '

‘4, LTT00UUY,

S92 44 TN

1 'R O

.‘...Cﬂﬂnﬂncc:

‘yptutloulluy,

‘YuTulTTLlun

‘Y T0T0uduY,

SululTluuv,

‘anTIT00UTun

‘anlliltulug

4011000 Tuy,

Muull(luuy
anlTT0ultu,
\I._nﬁﬁnﬁ—,mﬁ._
\J:ancccwc:
‘yalulllvivg
‘“ulelovlvva
sx:—C-ﬂﬁcc=
LS 4TIV
4w TITTUO0U,
M JLTOUl TV
e TITITTV,
a0 Lol v
I T2 S SRS
‘4n00T5u0Tun
‘4n0CiTluluy,
‘40 T0uUYUL
9u00TTTuUY,
‘4aTTIQUTUY,
-J.-ﬁﬂw.ﬂnﬂcf-:
‘uy LTTOUUUL,
‘G TTITT0dV,
‘4 LT0UTUL,
‘quulllituu,
.1=n6~c:~nc=
‘qululTlllug,
‘Salulouluuy
~J=~cﬁﬂ—€c€:
J-.ﬁﬂmCC‘n‘:
"walTTlluluy,

.~ v s s

.J:ccgﬂwcpc;
;:cc»:ﬁchﬂ:
J:cccnﬁc:c:
‘9n00luluvly
;:ﬁﬁcﬂ—ncc:
J._ﬂﬁﬁc—.n—uﬂ:
‘waTTUTluouw

‘qulliuluvly,

“an0TuIlTuu,

anuiTloliuly

Saluullllu,

4 lolulllly,

4 l0ulluvun

v luTuTuvig

wwllulivlvg

My LETULlOLT,

v lllluion

spulluluily,

AuUulLluuy

anuululioly

sullulliivg

‘qnlilullily

sJ:—ccﬁn‘n::

‘aulululully,

OIS ST

‘aplululiuly,

‘J:Cncﬁpccc:

-.—..CP—_C—CL—:

‘quuluTiliuy,

~£.-CH~G~FH?.

‘auululleiuy

‘qubuluillly,

‘quouulluiva

‘4 00Tulull,

‘auU0uTIuvou,

‘qn00lutouty,

‘Yallullluuy,

LTIl Tuin

M LTuTTuov,

a LTIl

SuloIlTlou,

‘GyOTTuLlul,

-A:HccHn—ﬂc=

fanTUTuliTly

‘Snluviluouy

‘quylululuuly,

-4-.HH¢—. tulun

‘anlllutully,

.
.
.
¢

¢
’
¢
v
.
.
.
.

.
¢
¢
.

4]

‘quluulouive
.1_.CCGCHLF—:
‘Snuuuluuuiy,
‘9n0uuuluuly,
‘qalluluivda
‘qnTTUOL LUl
‘SulTuluuduy,
Canlluutueud,
‘Su0TUTuluuy
‘a0 LUl
‘SalOulullvg
‘aTUuOLTLTy
“quloulouuu,
‘yulouotudly,
‘qulluloutlyy,
"Gullvolelly,
savlvluvivg
wVlovivll,
ET IV VA SVIVIN
qylduulluly
ST AL R SN
ubluvlilly,
‘anlouluuluny
a&..—.GCCﬁC—._—-.
‘G louiuluuy
‘vatduulivla
‘9 luTuuuue
‘4aUT0uluvly
‘audluluiivn
‘9nuluulILLy,
TR YR @ AV
‘SnU0UOLTLT,
I I
‘400UUTULT,
‘Ypuulluluug
‘400U TuuTy
‘aulloluluu, ‘
‘anlivolivly,
sJ:nﬁchCc.:
G LL00Tun Ty,
‘Yudloluluuy,
ul0olTul,
Saloulullvg,
anlutulLll,
wpluulovouy,
yuloduluuly,
‘aplluluvloy
‘anlluulull,

.
.
.
.
¢
.

/e

ouskd

“qpuiulusily
‘J:CC—FL‘nﬁ:
‘quuouluoualy,
‘Gauullouoly,
fanlluloluly,
‘anllliviuly
‘anlloTuwul,
‘quTliTouul,
‘qwluleluly
“anUlTTotuly,
‘Guluululll,
‘qulullullly,
‘wplvuluuuly,
‘anlulluvvly
‘alluTuvll,
quTITIOVIT,
wavluluvily,
My OLTLUULT,
Muvuu lululy,
BT TR LA YT
aullululliy
o lLLEuITL,
‘Ynlouluvil,
‘ynlulluvily
.x=ﬁcr dluln
xz—cpﬂgﬁc.z
‘wwululuuuly,
‘qullluvuly,
*uguiulolll,
‘i ILialll,
“anbudluniin
‘9auullul. 1y
‘Yuouulue . T,
‘qpUullnelly,
~1=c€27:cc~:
;:_Lwncccu:

Callolululy,
G TITTUTul,
‘anlluluuuly,
fnTTllTuvul,
o T0Tululy,
‘YaU LTIl
‘9 100TUITT,,
S LOTTelll,
wplO0uluuuly,
wolOlTuoul,
S lloloully,
S TITLuwully,

1
v
v
.
.
v

.
.
¢
.
.

[l 49, an| Ay poash o
Tddy U] VU UV IRIGUL UQISIIIUOD Yl SIUdWE |t

“wuoulouulty,
‘GWOu Tl T,
‘4,u0T0u0uL,
TR G IR
‘yoliluulul,,
‘G lTITTIul,
T S S CTTIVIVE O
‘an LTI,
‘Y UTLloululy,
‘aullITIuL,
‘e luloulll,
‘G TUTLILLT,
-I..ﬂcﬂcCCCﬂ-.
.A:wCH—~CC~:
‘qTETO0UIT,
‘YaLTTITULL,
‘qiluuull,,
SaULTTTuTT,
wabJd oululy,
wn0ullITul,
s LTTOUILT,
e ETOLLTLL,
‘wnTUIOUOIT,
“anUITIULT,
‘YW 10TOUTVT,
‘wnlulillul,
‘Suuiluvuuly,
ERT RS S 9 SVIVA 1)
“4nulloulll,
‘qaOTITIITL,
‘auvlOullly
‘U QULLITIT,
‘4u0ulouully,
‘Gauulilull,,
‘400100001,
‘YauoItTURL,
‘4 TTTODEGT,
“anETTTTTUTL,,
‘G LTTO00UT,,
‘G TTITTUCT,
\i-.tnﬁotnc—:
‘YuOTILITuL,
‘qululoulLr,
‘A LOITTTIL,
‘aTOTOU0UT,
H1=ﬁcﬁ-cc_=

LR

S LLTOWVIT,
S [TTLTOLL,
) eyl

:J::Cr_cccﬁn:
‘Gabulululon
‘qu0000uUuT,
MCTRVIVA VR VIV IVI
‘ynllovulul,
Y TTTolluu,
‘q,TT00uwul,
‘Salllulovin
“qaulOUOTul,
“GuulTulluu,
“YnTOOOUITT,
‘Y Tolulllvy,
‘Y T00UWLUT,
‘wulululovua
‘g T100UullL,
\I:HHucmcqc:
S TovlulT,

Yaullululu,
CVIVIVIVIVR QVA o

yuuulullov,
S lTO0ulIT,
Y lTlulliva
‘quludouule,
‘yptulululuy,
‘NaT000UIvT,,
‘Yplululivun
‘quuluvvuuiy
‘Ypulluluvun
‘Yauluvelll,
‘v vl lun
‘Ya0U00uITT,
‘Guwololliu,
‘4, 00000uI T,
‘udulotuluy,
‘G4uU00uuGuty,
MCTTTTV] 470 SVIVIVIN
‘41000 TUT,
‘YulTTulluu,
.;:Hﬁccoccﬁ:
x:—'~c~ccc:
‘4uulousluly
.;:c__;w—cc:
‘4, 10000TI T,
‘Yulululllu,
‘4aT0000UUT,
‘Ynlululuvig
nl-.ﬂﬁOCQCwﬂ:
4y TTTOT0Tu,

.
.
.
’
’
.

9|4l U |Silyuva

dde | Juy

ALuO w|VdgS 41t

Sl

LIU® 199|914 3T U SN,uud 3113 sudldul o/

SOl 40y |NPUN Suiddyd|ou, Uy

.

J..(p((ncHL..
J..Lﬁtcttﬁt..
CIVIVIVIVE @ QVEVI

sl.-QCLLQNL(..
T v 3 @ T

.I:Hﬁcc‘ﬁﬁg:

4:~cuc~gncz
‘wnluduuuli,
‘anluvallug,

‘9, TuGuulou,,
‘0 luulCly,,
~1:o~ccuco¢:

xzcﬁccﬁﬁﬁc:
‘9ndlivully,,

‘anludulllu,

“9uGouullo,

‘auvllIvuly,
‘euvlullolrl,,
‘9 0uTT10T09,,
‘4u0ulllul,,
‘9 ILLT0TLu,,
~x:~_cﬁ-_~:

r..-HLﬁHOC~C:
“anluullcll,,
I-ﬁ(ﬂﬂCﬁOC.-

sr.:ﬁODﬁHﬁOﬁ:

r.-CﬁNﬁOOCC-
‘9u0Tullo0T,,
x:cmmmcwwc:
I:CHQﬁHHHH:

J:O‘HﬁCﬁﬁC-

‘MabuolllIre,

HEEIT D §

sr-..CﬁﬁCCC~C:
A:cﬁﬁmﬁcﬁc:
[:CCﬁCCﬁCC-.
‘Ywuiillluu,,
‘wy TTL0UT Tu,,
~J:m-m~m~c:
::ﬁcﬁcccﬁc:
‘anlulllulu,,
~::~c~oo~cc:
J:ﬁcﬁﬁmncc:
L-Oﬁﬁccccc-
J:cﬁﬁmﬁccc:
x:Cmﬁccﬁmc:
r.:Cﬁﬁﬁﬁ—.ﬁc:
“9n00T1 20Ty,
sl:oc-‘ 3 —.ﬁﬁc..

‘wavivilulu,
W lIlolull,,
I:CCCﬁﬁ—CC-
‘Sub0lullulr,
‘A TTullllu,
~x:~m~o--:
x:ﬁccﬁucﬁc:
4:Hc~c~c-:
x:ﬁocnnncc:
xzacncnﬁcﬁz
x:cﬁcaﬁccc:
l:CﬁHCﬁCGﬁ:
‘9 0T0ILIi0,
‘qyullVITLI,,
“9w00ullltu,
\‘.-CQHCPHHH:

~

4

{vuda3u
sl_:CﬁCﬁCC—.C-

(ily ¢

x:c~cc~caﬁ:
::cccﬂcacc:
l..CCCCHHCﬁ-

\I-.ﬁﬂ&ﬂCﬁ HC-.
\r.:ﬁﬂCCﬁﬁHﬁ:

I..mcoﬁccmc:
I..ﬁCCCﬁCHH:
‘anTovluluo,

~x:~ccc-c—:

I-.CﬁOﬁCCCC-
x:cﬁccnccn:
J:cﬁcﬁcnac:
x:cwccﬁnﬁwz
‘.-OCCﬁCﬂHC-

TS 4 4

I weed

/e [iv" 1wy,

U) YviSUew|py padas; jeun

.x:cﬁcﬁccphz

xzcaﬁaccﬁaz
‘9yu0VIulul,,
‘uulloiul,,

‘qullvlulll,,
~x:--c-~:

4

::ﬁco—ccﬁﬁz
::Hcaﬁccﬁﬁ:
‘wnwliovlolot,,
x:ﬁcﬁﬁcﬁca:
L:cnoﬁccc~:
::cﬁancccnz
‘GuUlulullr,,

‘HuulTTulll,,
\J..CCCHCHﬁﬁ..
‘wwuollortr,,

M T B VIV I

sx:c_ﬁcccnﬁz
x:cﬁﬁnpcﬁﬁ:
I-.CC”CCﬁCﬁ:
‘wpuulIlllol,
‘a, TLIVUILT,,
.::aaﬁaﬁﬂﬂaz
x:acﬁcccﬁﬁ:
‘S Tulllull,,
“wulotouotur,,
.;:acﬁﬁﬁacﬁz
::cnﬁcccc~:
;:cﬁﬂﬁﬁccﬁz
‘yulT00IIL,,
‘uulTTIITL,,
‘Gubulovtrr,,
‘9 0uITILLT,,

SYLIN duy @ Npu,y dJutdeydjoul uy

29892 3103 3dnldii

(8) 31w (

‘g ULl L,
\I.-CﬁHCHCHC.-
si-CCOCCﬁCﬁ:
‘4,0uTullu0,
‘4, LT00VITLT,,
‘4 Tllullly,,
s‘..ﬁCOCCCﬁAP:
‘aluloluly,
‘auT00V0TUT,,
~::~c_¢-co:
x:cacoocca:
L WwWITOT00u,,
4dlOUulll,,
~::c-c-~c:
‘9wUvouuItLI,,
‘a0ulullto,,

Jiea

s/

P —

|
A
:
t

An Enciphering Module for Multics page 43

APPENDIX C - THE ASSENBLY LANGUACE IMPLEMENTATION

The basic philosophy of the Multics assermbly language
version of Lucifer was to produce a program which could
encipher or decipher at the highest sneed. This does not
contribute to the readibilityv of the program; therefore this
explanation is quite detailed. If the reader is wunfamiliar
witih Multics assenbly language, a short introduction is
given in Appendix D.

The set_key entry does more than store the key in
internal static. During ciphering the key is used in two
places: transformation control and interruption. For
reasons explained later, each purpose requires the key to be
in a different format for optimal operation. To avoid key
manipulation during ciphering, set_key stores the key in two
variables, key and exploded_key.

In exploded_key each bit of the key is given its own
nine-bit byte. The high-order bit of ecach byte contains the
key bit; the low order eight bits are zero. This key is for
transformation control. In the diagram below showing the
storage assignment, the ordered pair in each byte position
gives the byte of the key number and the bit within the
byte. As in the hardware diagrams adjacent bits of a byte
are arrayed vertically, although it is more conventional to

show memory words horizontally. Thus each byte of the key

An Enciphering Module for !Multics naqge 44

requires two words; thirty-two words for 128 bits,
Figure 5: Exploded Key Bit Assiygnment

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2

™

120(112|104f 96 | 88 | 80| 72| 64| 56| 48 | 40| 32| 24| 16 8

121|113|105| 97 | 89| 81| 73| 65| 57| 49| 41| 33| 25| 17 9

1221114{106| 98 | 90 | 82| 74| 66| 58| 50| 42| 34| 26| 18 | 10

1231151107 99 | 91| 83f 75| 67| 59|51 | 43| 35(27]|19{ 11

1241116108100 | 92| 84{ 76| 68| 60| 52| 44| 36| 28| 20| 12

1251117{109}101 | 93| 85| 77| 69| 61| 53| 45| 37| 29| 21 13

12611181110}102 | 94| 86f 78] 70| 62| 54| 46| 38| 30| 22| 14

1271191111103 | 95| 87| 79| 71| 63| 55| 47| 39| 31| 23| 15

For interruption, the kev bits within a key byte are
not accessed in the same order as the confused hyte's bits,
0, 1, 2...7. Rather they are accessed 2, 5, 4, 0, 3, 1, 7,
6 as given in key_table of the PL/I program or as shown Dy
the wiring of the hardware. To avoid the use of such a
table and lookup time during ciphering, the key bytes are
presorted by set_key. Lach 8-bit byte of the key is stored

in the high order part of a !ultics 9-bit byte, the

remaining bit being zero. Thus the storage assignment is as

P -

An Enciphering Module for Multics page 45

shown in the diagram below.
Figure 6: Key Bit Assignment

<
5 4 3 2 1 oWk

0

.\
4 0 ;12 8 4 0 0

5 1113 9 5 1 1

6 2 {14 {10 6 2 2

7 3|15 11 7 3 3

Words 0 and 1 are copied into words 4 and 5. This is
to permit directly addressing eight bytes starting at any
byte Dbetween 0 and 15 without progranming a complicated
wraparound routine.

The basic idea underlying this program is to process
all 64 bits of the source and convolution registers at once,
each CID cycle. In order to do this, the key bits must be
SO arranged that each of its bits lies in the bit position
corresponding to that of the source register bit with which
it will be exclusive-ored during interruntion, This
explains the rearranging ahove.

When the encipher entry is cz2lled, it sets
interruption_row (held in index register 2) to zero as in
the PL/I program, Since an entire CID cycle is done in
parallel, interruption_row will never be incremented along
the horizontal 1line of the key byte access schedule given
earlicr. 1Instead it will be incremented each CID cycle to
assume the values given in the schedule's left-hand column,

Examining the schedule it can be seen that interruption row

An Enciphering Module for Multics page 46

should thus be incremented by 7 for encipher and -7 for
decipher, modulo 16. Thus each entry also sets the variable
either_7_or_minus_7 to the appropriate value. This is added
to x2 mod 16 each CID cycle.

After the argument extents are calculated and pointers
to the strings fetched (bp =) input string, bb -) output
string), the main loop is entered.

As in the PL/I program, the first 64 bits of each
128-bit block are placed into convolution_registers, the
next 64 into source_registers. As with the key, each 8-bit
byte 1is placed in the high order eight bits of a Multics
9-bit byte. This unpacking is accomplished by unpack_lonp.
This loop depends on the fact that the assembler will assign
source_registers a location after convolution_registers
because it is declared afterward, The 1low order (high
address) bytes are unpacked first.

Once this 1is complete, sixteen CID-interchange pairs
are executed,

First, the convolution registers are prcpared for the
diffusion operation. Referring to the hardware diagram, one
can see that each bit of a confused, interrupted byte
(vertically arrayed) corresponds to a different byte but the
same bit (i.e., horizontal register) of the convolution
registers., As seen in the PL/I program, if a source

register bit has address [i, j] (byte i, bit 3j) the

convolution register bit corresponding to it is

An Enciphering Module for Multics page 47

[mod (i + convolution_table (j], 8), j)
where convolution_table is (7, 6, 2, 1, 5, 0, 3, 4).
Instead of looping through each bit as the PL/I program
does, the convolution registers are rotated so the bit
positions for diffusions line up, corresponding with those
of the source registers.

Since the horizontal reqisters are the bits to rotate,
the bits to rotate are not adjacent. Thus the bit addresses
within the two-word convolution registers of each bit before
rotation is as follows:

Figure 7: Convolution Registers

7 6 5 4 3 2 1 0 -

63 {154 [45 136 {27 |18 |.9 0 0

64 |55 (46 |37 {28 |19 |10 1 1

65 |56 (47 {38 |29 |20 |1} 2 2

66 |57 |48 |32 |30 |21 |12 3 3

67 [58 |49 |40 |31 |z2 {13 4 4

68 159 |50 |41 |32 §23 | L4 5 5

69 |60 |51 |42 {33 |24 |15 2 6

70 |61 [52 143 {34 |25 |16 7 7

Wotice that bits 8, 17, 26... 71 do not appear assigned
on the matrix. This is due to the unpacking of each 8-bit
byte to a 9-bit byte. Thc unassigned offsets are those of
the pad bits, The purpose of this rotation is to align
all the exclusive-or positions on the right edge of the

matrix. Looking at the hardware schematic, the desired

An Enciphering Module for Multics page 48

position of each bit is as follows:
Figure 8: Postrotation Convolution Registers
7 6 5 4 3 2 1 0 vy

v i

6,050)40}3,0|2,0}1,0|0,0]7,0 0

5,1)4,1)|3,1{2,1|1,1|0,1}7,1]|6,1 1

l1,210,217,2|(6,2 5,2]4,2{3,2] 2,2 2

0,317,316,3}5,3|14,3(3,312,3]11,3 3

4,4 |3,4)|2,4)1,410,4|7,4|6,4|5,4] 4

7,5({6,5{5,5(4,5(3,5/2,5]1,5/|0,5 5

2,6 |1,6 |0,6| 7,6 6,6 |5,6|4,6]3,6 6

3,7(2,71,7{0,7|7,716,7]|5,7|4,7 7

This rotation is accomplished as follows. Row 0 (bits
0, 9, 18... 63) must be rotated right on the diagram (left
in the AQ register as it happens) seven positions or 63
bits. Row 1 (bits 1, 10, 19... 64) must be rotated 6
positions or 54 bits, etc. An array of masks, and_masks,
has been prepared with a l-bit in each bit position for a
given register. They are ordered according to the number of
positions of rotation neceded. Since register 5 needs no
rotation (because the exclusive-or gate is already in byte
0), the mask for it occurs first. It consists of four
zeroes, a one, cight zeroes, a one, eight zeroes... Thus,
when convolution_registers is loaded into the AQ reaister
and is ANDed with this mask, only bits 5, 14, 23... 63 will
remain, This register is rotated 0 bits left and then ORed

into a previousl zeroed doubleword, named "normalized".
p Y

An Enciphering Module for Multics page 49

Next, register 3 must be rotated left one position or nine
bits. Thus the second mask has a one in bit 3 and a one
every nine bits thereafter, After ANDing the
convolution_registers with this mask only bits 3, 12, 21,..
66 remain. The AQ is rotated left nine bits, and ORed into
"normalized"”.

There is a pointer to and_masks called and_masks_ptr.
It is referenced by using the add-delta (AD) type indirect
reference. When an indirect reference is made through this
word, after completion of the specified oneration the
contents of the delta field (here 2) will be added to the
address field. Thus the next time the AQ is ANDed the next
doubleword mask will be used. Similarly an AD word controls
the shift count. The first time through the 1loop the AQ
must be shifted zero bits so the address field of this word
contains zero. After every indirect reference the address
field will be incremented by the delta field, here nine.
Thus the rotate counts will be 0, 9, 18... 63. In addition
this word is used to control the number of times the loop
will execute. After an add-delta reference is made the
tally field of the word is decremented by one; if it reaches
zero the tally runout indicator is set. This tally fielad is
set to eight before beginning the loop. Thus the loop will
iterate eight times, due to the transfer-tallv-runout-flag
off instruction at the end.

Af ter preparing the convolution registers, the

An Enciphering Module for Multics page 50

confusion operation is performed on the source registers,
This is done by loading the source registers into the AQ and
shifting right one bit position. Now each 8-bit byte
appears right justified in each Multics 9-bit byte of the
AQ. The AQ is now ORed with some doubleword of
exploded_key. Each bit of exploded_key occupies the high
order bit of a 9-bit byte; thus each bit to be used for
transformation control now resides to the 1left of the
corresponding byte of the source.

The doublewvord of exploded_key to use for
transformation control is equal to the byte of the key

addressed by interruption_row. This is because cach byte of

the key uses a doubleword of exploded key, and because

interruption_row (in x2) always addresses the first byte of
the key to use for interruption this CID cycle which is also
the byte to use for transformation control. Since even the
doubleword instructions address in word indexes,
interruption_row must be doubled. This is done by adding it
in twice, once in the epplb instruction and once in the oraq
instruction itself,

The AQ is stored and translated by the mvt instruction.
The confusion_table used here is identical to the one in the
PL/I program, except that each 8-bit result byte is as usual
left justified within a 9-bit byte.

These confused Dbytes are now interrupted Dby

exclusive~oring with the eight bytes of the key addressed by

An Enciphering Module for Multics page 51

interruption_row. Diffusion is obtained by exclusive-oring
with the prerotated convolution registers stored in
"normalized".

The interchange operation must, as well as swapping the
source and convolution (now stored in "normalized"),
unrotate the convolution registers to undo the effect of
lining up the exclusive-or gates described above. This 1is
done via a very similar loop to rotate_loop. A
subtract-delta modifier references through and_masks_ptr.
Since this modifier subtracts delta before indirecting the
masks will be used in the reverse order. The shift counts
needed are shown below; the add-delta word for shifting
again supplies loop control,

Table 3: Convolution Register Rotation Counts

Row Previous Rotation Post-Rotation
5 0 72

3 9 63

2 18 54

6 27 45

7 36 36

4 45 27

1 53 18

0 63 9

The register accesses and rotate counts for the prerotating

should be read down; for postrotation the table should be

read up,

An Enciphering Module for Multi 's page 52

After sixteen CID~interchange pairs, one more
interchange has been done than desired. This is undone by
swapping the two registers. The bytes are now packed into
the result field.

Some possibilities still exist for speeding up this
program. The two loops controlled by tally words onlv loop
eight times; they could be exploded into eight copies.
Since the address of and_masks and the rotate counts would
in each copy be known at compile time no indirect words
would be needed. In addition the loop control instruction
ttf would be eliminated. Counting ¢ttf as two memory
accesses and each of the tally references as one, four
memory accesses could be saved each rotation. Since eight
are required in t op, and there are two loops, 64 memory
accesses would be saved. Eight more would be saved by
eliminating the tally word setup instructions at the
beginning of each loop, for a total of 72. Since there are
sixteen CID cycles a total of 72 times 16 = 1152 memorv
cycles might be saved. This may total as much as a
millisecond, thus saving about twenty percent of the cipher
time for a given block. This demonstrates how sensitive a
program's performance can be to minor changes in coding
style. Other experiments are suggested, such as completely
rewriting the program with all arrays transposed (so that

the bits of a byte are not stored sequentially), or

eliminating the padding bit on each byte.

d 73 3874 4. 49 21 %8=-4238 yIUd|TOU
Y3Jua| T3Ix33

APlue «(O4m 3O SI|G UL Y3IFUI| = 32T - 1

. (1 ‘Ino7e) wip =« [& 121

***(3In0"@e) punoq| - 11dqg

‘*°(inoTe) punogy zldaq

403Q)140%3p 01 430 33d ep’J>sapTinoTeade

Yisua|TIxal

Aesue Iloym ;0 S3I1GQ Uy YIBuI| = §ZT L

(1 ‘ul™®) wip = 1 » 1Pt

s+e(uiTe) punoq| - tlaq

‘*°(u|Te) punoqy Zldq

403d13OsSap 03 431d 3338 sN’JSapTuiTe)@

31 9INS [34 05 Ox ul 430 S|yl 40 Yidua| 3Ina ’‘sas 4
ou 212

430 Ae|asip e 313yl S| np’g

dA1104300 S| UOIIdUNSSE 3| SN ST YD ym IPOd 13 olce
IS|| Yae u| 430 ApJAsS)p Ou Iunsse 0

S31243 Q1) 91 4938 UOIIPUOD UOjIRU| Ul angeaT eyl v

433e| J0j 31sey URYY Buou LTSNUIWTIO L TaayY gd
{ ™MOJ u013ANJIIAIUY YIIm I1DAD G|) yoea jse3s l-
(K93 30 33AQq YIuju) mOs UO|IANIIIIUY fer3quy 6

Jd1’s-utorf

LTSNUIWT 0T LTy 1d

G124 G1J ydead saije A3y uy SIYAQ L piemao; o3F L
MOJ UO|IANJIIIIUY (BRI JuUY e

anjeaT el juy

P32 | PWIOU’SIIAQTPISN JUOD “IDINOS “UD 1IN |OALOD

PJOMTI I YS LTSNUIWTI0T L/ TI9YI 19°u0)3 1500 1x3] ‘yIdua| "I xal
0l ‘>sap_3Ino”e

c’2sap uyTe

9’apod~e

y’3Ino"e

Z‘uy”e

C’anow

23yd123p ‘a3yd 12U ‘LAY 3I3S

Ul
hawd
s|b
hpe
bqs
bp|
aqoda
bis
s|b
bpe
bqs
bpy
daada

oxed
T}
XA
L1xy
oxed
2x3s

(%3S
Lxed
zxea
ysna

eJy
%3S
[xed
rxea
ysna

awa)
pa.R3
awal
nha
nba
nba
nba
nba
nba
A23Ud

IVl 1230019 *~ UOISIALP yd4edasdy SwaIsSAg 4IINJuO) Iyl 1€
321paudg uopaog 9 . , LGl ‘1 Aey papo)

*A314N2S40 203 S143 YI M I130WOD pINOd sueITOId MI4
cAI%O)N AJ1dA un,y 01 paudpsap 4331907 30 uOISJAA |@)O3ads e S weaBoud Siyy

*oU| ‘SwadIsAS uolRWIOU| | |IMAUOH
pue AJo|ouydd] j0 IINYIsuy Si1lssnydoessey; Ay w/ET (2) Iy i13400)

£ 93ea $D111MNy; 403 IINPOK Fur1i3ya|dul uy

I T A —

24 INAINV 0 43U IS s ’3In0" e |de yyada
sde JNUU] 0] 43U I s’uj"e|ue dyude

g wsed SU3ILNK 403 I NPO Fu|494djdouy uy

— — R —

vl fe=ged |41 UVISI,Uud “de

8 'SUIAYT eSS 3ULD epISey
8'SOIAG pISNIuULD CHISwy
(I9]SN,U0D) P{4C) wIA dI¥|SUva] (44) ‘(40) 1AL
SwiAy p@SN,uud vels
WAy JUNUS HU Ty depd Yoy U] Aeq AUL=Sq HU 1y 4Iee 1l Zx’0lw4l ueao
Ige|d 0 pRIISU| WlAy YOI LU vepv 1,9 3¢ (N0 1 141
dod 9o4IVS JWd ?240n0s bep|
SpdOM Adg v Jppl WAy || IM =
‘dpp S|4l VI pepp S| (X UdyM IX‘AY4 pdp0Udxe|d] qyloue

@I4N0S $511,U0I AUU Wi, pUly I4d|d W4yl UU peUs| | 94¥ SIIRT (4UX 943 (€ eyl
POICIVI US VWU YOI YI]M SUw]1S|d9d
UL UAUOI 40 AVUD ¥ pL] lewdOU U] IARy MOU

(AL1E3 @dS) S9w|3 ¢ vy YR ITTY ™S T3 T 223

P40 pul A0u [ere2] |CwicL bsJao

SIiy S,prd0M 3541y V| WU reol| | RWIOV €540

"23et gl WOl Yy Uyl ‘y A4 ISy 15148 re’pIVMT Y,y | yS dt

€ ‘¢ 3 ‘L ‘L ‘Y Yoyl ‘G SunnNud ity | |€ 29D pe’aIUTSq5RW puv U] wue
(€9 = o S3y) Sdwd JUIN|VAUVD Wi} ide 94 VO IN VAUV uep |

tdou|Te3e30d

(W] 3 4Ok® { SIUGWIIIU]) 4u}lj|4S 40y pdOMm gy pAOM 35| yS e3)s
b o= €Y ‘g = A |€|Iu] ‘¢ = A1 1 “110Tuu0s= Zd!
$U|d0 BUy VIIZ dqvuw p9Z| |RWiVY uels

(9optilq) uy vdeZ 1r’0 vl3

TdOV | Twaueyoawlu|
CSw|JAJ JiJ 3l ruUC #duRyIIWIJ| ST VP MOU |
YU I UAULD U] ¢ ‘eWudnus v ¥ o

‘p@ IRVUI dde SOJAG 31 ([IUN QU] IUID 21 ‘s =dou|Ty2€Uun 193
I9Bae] duy dwes Ir’s eys
AIAY 1ln=-¢ 490 IXSU VI Vs w’sg Lys
Qs © YU 0135 pue 93Ay Jly=g € w3t 67UV INJUAULD 4IS9y
Cttdlhy 1ly-§ Y€ dAVwL 8°0l9y 4osep
(0) L1hs*(wAvw) uun (1R 46)‘(Ju7ay) 152
Quo | TyItLun
SAW3S |30l u| qIUly oly-b 1I5€| V) 3e5,,0 leé 1r’6es5t eyl
19U [4 SIN3 Ul 93A4 Jiy-a IS¥| 0 wu|]|S0U 393 tr’gesl bye

TIUPUYAULD SUU|IAISU| S5 Ay YOI NG IURW Sew S|4l
4901 I1M=6 SOl B 40 SI1y

§ 49pd0 ey 943 SSIUNDII0 IJAY Il4=-8

GPEP IR YT NNIS 420y I w-321 Ixeu xledun |

ydiijud ‘oS 4| FYRERYINTORTFL b ¥ 193

dujdals V) ¥ pRpuey »| 9¥S 4ldue | TIx9] udud

dey US pedS5Sduvidd JuN0We Jesd YO 31SVd Ixe] Ly
tdou|TIxe]

d¢,y US peSSYIUIU VieZ Ju | disudTIxe] z1s

*Alewlededes JUALIOUY pUC QI0LY JlN=8ll o,

q4v@ J| pled "SU|SS¥I0IU UJUU| Ullw J|Bdy

g 9dvd SILIUING Uy PO SUIBGI DUy Uy

1991 Ala-5Cl 1294 03 s

2y %e=duu|TIx3] el

s "s-uvu| qo€d vl

SOIAY I v~y 49| IXYY V] vd tr’u ¢yS

PRTET] wJSep

b UV INOAULI YIsay

(U) LU Ls " (oAvw) (VU (U’ad) “(e’ad) 152

DAy A9AU| IXGu UY Ul Ir’s uys
1dOo | T 4Ieu

AIed 03 SRy Ilw-u I Lr’step erl

uu 3 suoTIXd) 03s

lr’écl Lp¥

19V iy w821 1%y 03 Vs JO1[SVUTIXdY Up|

UO | 3N [UAULD oels

reZ| |eUA0U bey|

@24Nn0S vels

CC_U———°>CCU CNT—

r92i|CWIVUY vels

JU | IN [0OAUUY pul dIUdNUS 94Ul (IR dI4NUS Ly |

@405 pul IDOQUWUIed " 420y Ilv=3Z1 SIYT 4I|Mm Idup

2] ‘e-duu|TPduUCYTaWIU] zZu)

Yol Sl ¢93481S 94 Jud 4 U] oY GNIRAT €YU} ra L%

41 poOw Wp 't los Ixue

A9y 1ldyl pdeMidey 4U pd@MAY, Ve [TShdw 407 (Ta94112 xXpe

Jie-uvu|TI¥IVAUN 232

pdUM LUl [e924n0S LSJ4O

@941105 wIu| INU @24NUS es 40

JUNULE I [JuUIdUR Ay 1y 4S pE pAOM 34| 4S 11

rIIRIVL P94 O Juil |V JEy] Iy | |B IN0U pue pS 2307 S sSew puR U] beue

S43)S[ovd UUIN|VAUOD pesSl,,jp sws roZ| |ewdou ue, |
1¢V0 | e 3euaun

8 9 ALI¥Y qoey NG pAdUM 3, | 4S ¢3S

U= oenleA e[3jul b = RILYr T4 = ALled tiuloullyugues= L

@92400S vels

U] 44[4u Juy d4n0s N0 VA92 [T} vis

AdUiA U H |y wuv uv{IN | OAULD vels

9J4anvs veyp |

pdA pug
JO[Silyy ¢

JUJdnddeu|

UV IUNIA@JU| 0, peslt Awq U AUd Jvd

4y 9e0u

TRDAD ISURYIIIU| Op MOU,

leproZ| | RWIOU LS4
vaZ||Rwiou esa9

S@JAY LdSNULD vesd
4°S9IAY T pISNHULD egISdp
PR ET N ¢Sy

(449) *(Zx’0) Jgu
S@JAY pISNHULD ueyp |

SN, 40y NP0 FULIIGU|ILy WY

21 T-s=-d0u T v a0 INLIGY fwil
M 91 0xdwd
ox°1 oxead
Ix1 Ixed
314 9492 3ISe| YIS 400y Il4-8 duo plp
21 ‘e =-duo|Tuv]IRINWIGY (%}
UVOL SS9l Y|t wuu, N’y IXJw
AdJUe o437 Uu]ivinuled Ixou Ix’l Zxed
11N>9d Ady ,U 3|4 IXeu VT Ca x’1 {xed
(MU 4v pue I¢ SIuiluo Aluv) Jjg y ¥ 43I M ped CAox|uy ISy
[uluy 4os9p
(V) LL1a 7 (@Aun) Uy ([x%aU) *(gx’aU) 1s2
doyuiu J|g J],y1Jeds Jed I AE TR TS VR Y BT 2T, NPT Y1) f(xpe
Ad.f 30U ULN VY Aduo X’y g¢xed
1d001TUG 3@ 3NWARY
1] Jxe?d
0 1xe9
A 40 Jwjud I%d |, 0 yxes

MUL §i1y=p v U] AV pOINWIY [y-y ORI WpUIUX D AVU ®

Y] ‘s=duv|Te, 0 uUxD fwy

(lel = 91 « ((1 = 91) S|y L1 Nd4] JUens daRy o ‘41 , Ny 31 0xdud

4Ujuulday SNOUAIIU wud, [333,30 ‘SAUIy L2 49ey S Jud Ux’ZLzI- oxea
Aene 314 Juu eujlaess ‘UWNUD XU Uy MUU STy § 29 UWNIOI Juu pays|uly IsSAf

e 9| ‘e-dov|T3,0|dxe Wl

Uil 10U Sl i GuUUp , | JeS Np “421 uxdwd

Aeme Sipq 3 “AIJUI Gwii|UD IXBU wqe) ux ‘gl uxed

A91 T @pO |UXD 30 3344 IXIU eS$N $u]l IXeu Ix‘ 1xed

93hy IiYeh ¥ L0 [y UOT wyq] w3 "" 6 AWy pupu UXI|U| JISIp

CtTAWY HU)y AUV AL [°yluy 9YIsdy

(V) L1 la P (9A0W) LUy (X ‘aU) *(gx’au) 152

tdouTepuidxa

Avq po,O|UXY 30 Ay Isd |, 1] 1xed
Adx 50 A1y IS4y, (] uxe’
WIAY Jiq-p ¥ 20 3]y IS4y 943 S®|UNIIV J |y yIew US -
‘1] ISUUSURIY puR A4 wy) 9pOUXe
A®4 S} qulwe dujays IIN=-8C1 29 dppe Jes 8’2 |ue dyude =
TAIy 39S
Tdey 9N 03 S| kI JuUYNUIS NS 40, Awq 943 I9S OF ‘AdJue AIXN 39S &

Yan3ed
s ‘90070 |ue z23s
$A0UTUANYwa

JANJSa
s ‘9p0dT k| de b3S
UdNJud 03 opud (¥4 ¢ by
UuCs JUU DAL pue Indu] zu SHlsuw) ‘quuy, 1YolewTY34ud | Tou

s daeu SILIIMG 40y 3INpOy Jujaagd Uy uy

9+91
L*391
T+91
¢l
V3l
hedl
S*31
¢+91

UO|JUNJIABIU] 40y pISN SUWN VY Adq 50 SUOIRINWIIU SIA|S,,

S4SRw-pUR UMOp JU UUNJ 403 puSN paOM AjleT (e|3lu}l 343 dn 13s

SWo [O4d pUNOIRARJIM JUIAIAU O pUI I A9) 0 SM0JA g IS4}y I3edy|dnp |

§g @aed

dae
dae
g4ae
dae
sde
dde
d4e
dae

t9lye3 UojeINudad

J4dnled” J404sS

4i3dTsysew pue|dy
sysew pue|dy

nehoxqldy
Aox|dy

esd4o
eea

beis
bepi

SOIILNW 403 9|NPO] dUAId4ulIdugd uy

pue
Uo | 399s adexuy/qullL/ ujofl
1/6°1/6°1/6°1/6°1/6°1/6°1/6°T/1 ban
1/6°T/6°1/0°1/6°1/6°1/6°1/6°1/2 P3A
1/6°1/6°1/6°1/6°1/6°1/6°1/6°1/S PIn
1/6°1/6°1/6°1/6°1/6°T1/6’1/6°1/8 P3A
1/6°1/6°1/0°1/6°1/6°1/0°1/6°1/L PIA
1/6°1/6°T/0°1/6°1/6°1/6°1/6°1/¢ PaA
1/6°1/6°T/6 T/6°1/6°1/6°T/6°T/H P3A
1/6°1/6°T1/0°1/6°1/6°1/6°1/6°1/9 pPaA =
1syseu Lue
AdRpUNUY p40iA UIAI UO poIdU,, Ul Al
I 20 €39y 4 Jup
11307 S ysew pue
25494 popoOX3 SS¢
g‘hay $Sy
USAd
uo | 309s @se4ul | Isn

9|43 uoIsSniuod pn | duy
:9| 483 U0 sSNjzuU0D

$213|N,{ 403 I|NPON BuUjdaydjdouy uyv

Bur/9
/ '] o /9 . 3 4
ca“ cc.cwu\cc.gra\cN.CVAKCc.c_
/90 v Ul /g Jd¢/o 1L 196
wluiv ‘ugu/vu? 2796089 b0 b us
v'0 viulu/ usd/o6’ 2Z/v%’ L/v6"
a5 (/007 dy/ve’ v/ve’ 6°0 6’02 uli/on’
9oL/ v mmr\L”-;hc\Cc\cuc\Cc~cMu\Lc~Cm““C0.:ﬂ.\Cc US5/ 9%
up? s ¢ Uik ? / . .
_ac\cc.cmw\c ~up~\Cc\uwQ\cc.Caw\c: cn;\0c~:hu\cU.CCu\cc
3 b 9¢ b’9LL/96 "’ /04’ Jop’ 6’0 b0Se
00/ TN /96 734 092iL/v ‘usn /e’ in/up”’ /96
=;F\Cc~uu=\cc.wmc\cc~LWu\co.uau\ c.¢Nm\cN.ch=\Cc.cca\cv
scnxcus“wn\Cc‘aM““Co‘uvu““c‘WhC\NO\umm\Cr.“_-.«U\Cc\“w““cv
Zns/oe’ 93/9° CIN o g o yén/e Ls/o6’ v
vlie/ :ha\c‘\acwxc . RUETN bIIn/ 6’951/
0a/9%" g/ve’e 6°us Nzl /vG’ n/vp /90"y Yo
Ny C-rWh\L .rmm\Cc-. VOIS TE G n¢s -br-"\c ’ un/ve
uan\cm.mua\cC.MMm“c@.nuw“uc.Nan\cc~nn~\cc.d%¢\c:.“cw“Cc
90¢ /0% €elo’ Qp LS A A c.nmh. e LI0G” sl/ve
:amxcm.wuu\c”.wmm\ca.ww;\ca.wau“uc.nnavuc~eh.\cc LaL/o%
_a:o.,u.:té;fca.m:é;::c oy gl pa 55/9¢
caa\o;.aW¢\cc.~hm\0c‘aww\cw.uau\:c”mau\c .rna\cc.mca\co
coH\c”.cm_\cc.uwr\co‘amc\oc.:n«\cc.unw\gc.umu\cc.rwc\cc
war\oc.WMr\cc.cM“\cc.c¢w“uu.aa¢\c“.anu\cm.“%m\cc.wmm\ca
08/96° /oy’ /96 ‘4s 0ct/ .amm I 3/0g " /9
nam\c“.@wp\cm.w”n\cc.umw\om.cuwvuc.cnwwuw~=h¢\om.4c¢\ca
cuc/0 nmxcc.inm\ca‘uMn\cm.wnn\ : cmm\co.cﬁw\co.awm\cc
Na.—\cc~www\€6 ﬂr\CQ~&wm\cm~¢_mh\“cHuNh\{. -CFJ\Cﬁ.“cm\Cc
0i/0 .nmﬁ\ce Mse\c,..mr\cc.u..\cc~¢mh\cm.uﬁn\eo. s1/9%
nny/ v’295/96° LR e 0'229/9 ‘3LL/0 ‘904 /0
=cc\mc.ancxcw.mh_\cc~umn\c¢ NMW\ce mw\cm mﬁw\ow.mmm\cw
aap\cm\auaxce,“ﬁc\co.:wU\cc.N:guue.nmm\om“nﬁ¢\cm\NQm\ca
:Cr\Ca.“wm\cc‘anm“cm.:m““wmuanc\c”~~mm\cm.MMw\oa.mwm“Cn
Uhe/og’ L/ upnyg fint nen/ /06" Vb
: : 196" 4 /967 up “ zst/
ccw\cu.omw\ce. L8706 7 ernes/ ngh /o ‘aIn/0p* p
, 'F] uig/o -~mh\c . vp’ 6L ngn/o
une/ t/9% "’ 6 b N el /06’ 6
gumunzsxm?.umuu,.&“w.é“”nmsm.“wm?
unp/o .cuu\Ow.c 06403 6°00L /9 .cah\cc. L/96 45 up
ezc\cc.cnc\cm. 14/96°05 \Ca.an\C¢ omh\co.cus\cr.c < /0p
91700 cwa\co.Cﬁc\cc.c /00 0N 0029 ki
: 90/vp’ 9/96° /98’ b‘0s
WCn\Cn.\wmﬁ\CQsChC\Cc- . /0’0 ugd/o Ul9/08° £ /v
w:g\cu.wwm\cc.w—ﬁ\cc.ww“\cc.cm““uc“cma“cn”ohm\cm.oou\ce
wo:\cc.une\cm.uﬁ~\cc.mmu“cm.c-\cm.:na\co.cna\cc.“m~\ce
.._:é.w_mzé.zunzzsunrf&.“M::..x._?..cu&u..
nol/o 1/96° 095! 920/9%° e ey
Ingrop’ ‘n95 /0p aL/9% " VAT L Ty 945/0b° 05/v0
m,::cﬂwm:c.. :m“uc e ._.fmm:_Nicc.f_:.é.mm““é
00/96° 0/v6”’ 6°25 w i/ 0’95/ NS/’ Ve
g/ el g ol
v’ ot »°290/90° nL/o L/96"° §/0p’ b
90< 9g2 /06" /o6’ (L4 bles Z1L/0 nel/v
L2/96°9% 196°92¢/ 6 wm:xco.una\Cc.mmm\cf
ww\Cm.u:uxmr.uNu\cM.Nna\cc~w=a\Cw
c.u»w\cm.wﬁu\cc.umo\co
9L9/96° 09/9%
952/96

49 wie*".
PR LN L)
403 uwo #1301 Wi
13 04
E-w;oco uo 3 PoLLED
12d}° o”mwm:cu pe ¥y Aquo p
wey vl n
:c_aaucww:wtu-hiw;m Y
113 Si4
s
NI

pan
pah
Fah
vah
PaA
vah
rah
Fah
pah
PIA
PahA
PaA
paA
vahA
Pah
ral
1.k\v.
Pah
~.¥>
rah
5F)
I3 1
rFah
(ra
PIA
pah
Pan
viA
PaA
PIA
PaA
Yan
Fah
L)
Pan
rIA
P3A
FIA
E3IA
PN
PaA
FaA
Ly
Pah
Pah
rah
PaA
Pah
PIA

"

Uy @deu
$2(3

INW 40

2 |NPOY Fujdd

Yo ou

FIR

v

W€* 19U} 91 4eITUOLSN3U0D 714 FUNTINT UN3 4

NG 2/96°NSL/00 N1 ¢/06 NIT /06 NTL/06 NTI/06 nT3/96MUI/0b P3N
HOC/96N99/06MLC/06°N53/00 uNg /00 NE3/06 MLd/06 NSL/9b P3A
0nT/90 0ST/9 0T I/00°09L/90 021/96025/9%u°015/96°005/96 PaA
UOT/9b°096/96“0LT/96°055/90°uns/0b ugs/06°0L5/9°0ST/96 P3IA
w:m\cc~¢MM\cm~cﬁM\cc,ccm\co~mNM\Ce~¢N~\Cc~mHh\co~¢CN\co PIA
9US /0L 93L/00 9L E/069SL/06°INL/06 3EL/O6YLL/Ov ISE/Ob P3A
N:N\cc~NMN\Cm~N~m\cc~Nmm\cc~nmm\ccsmmu\co~mﬂm\ccsmcm\cc b A
CUL/O0LINIVb T LLLIO6 TS/ V0 LI /0B CEd/Ob TLY/Ob ST/ PaA
INT/00’ T2l /96 CTIT/906°TIL/06 2LT1/067¢Ta/067CT1S/9b Cus/ PIA
C0L/90°¢96/90CcL1/00°TS55 /90 ¢na/00¢es/0b CLs/Vu CST /b PIA
nnu/00 us0/06 NT0/9u u3u/00 NT0/06 uen/op nTn/Ou U/ PIA
HOU/O0 NIN/06 ‘NLU/C0NSH/Vu /0 Ngu/06 LN /00 n50/00 rIA
JJM\cc~:MM\ca~:~M\cc~:cm\ccsaNM\Cc~:Nh\om~:-\cc~:ch\cc PaA
aoM\ccsawn\ca\JNM\CC\:ms\ccssan\caszmn\ocsanh\ccsamm\ca Pah
0Ns/00°0ss/96 ‘Ul €/90°03€/96°0¢E/96UTL/VE6VTL/O0U0L/Ob P

[y Qdeed S0i1iN,y 403 INPO, Jujdaqu|lIug Uy

An Enciphering Module for Multics page 62

APPENDIX D - INTRODUCTION TO MULTICS ASSEMBLER

This section is intended to be a quick introduction to
the Honeywell model 6180 processor for those who are
unfamiliar with its machine language.

The 6180 is a word-addressed machine with a 36-bit
word; it also possesses some very powerful bit string and
character string handling instructions. There are two major
arithmetic registers of 36 bits each, the accumulator (A7)
and the quotient (Q) registers. These may be coupled to
form a double length register, the AQ., Instructions ending
in A, Q, or AQ operate on the corresponding registers.

There are in addition eight index registers of eidhteen
bits each., Instructions ending in xN where N is an octal
digit operate on these registers. Most 1index register
instructions take a storage operand in the top half of a
word, except for sxlN (store xN in lower half) and 1x1N
(load index N from lower half),

There exist eight pointer registers for generatina
segment number - word rumber pairs, These registers contain
a character offset and a bit offset from the addressed word
for the use of character string and bit string instructions.
The names of these registers (in numeric address order) are
ap, ab, bp, bb, 1lp, 1b, sp and sh. The ap points to a
procedure's argument list, The lp points to the procedure's

linkage section where internal static variables are kept,

An Enciphering Module for Multics page 63

such as the key. The sp points at the stack frame, in which
automatic variables are kept. Variables declared 1in a
"temp" or "tempd" pseudoop are placed in the stack frame by
the assembler and are given one or two words each
respectively. A temp variable may also be given a subscrint
in which case it will be assigned that many words.,
Declaration in a temp or tempd implies an sp reference. The
other pointer rcgisters are used for spare registers; for
example, the bp points at the input string and the bb points
at the output string.

A sample instruction would be

ldq lp |00
This instruction will load the Q register witli the internal
static (because of the 1lp reference) variable foo.

adq 15*3,4d1
will add 120 to the Q register. The dl address modifier
causes the address field to act 1like a memory operand,
padded on the left with zeroes. The du modifier pads on the
right with zeroes.

The following strange-looking multiword instructions
are the special character string and hit string
instructions; this one performs boolean operations on bit
strings. Here a simple move is indicated.

asl (pr,ql), (pr,al),£il1(0) ,bool (move)
descb bp}0,8

convolution,9

An Enciphering Module for Multics page 64

will move eight bits from the address bp|0+ql to a 9-bit
field (padding with a 2zero bit) at convolution (plus
implicit sp reference) + al. The offset modifiers gl and al

refer to the bottom of the Q and A.

nmvt (pr), (pr)

desc9a confused_bytes, 8
descla confused bytes,8

arg confusion_table+3-*,ic

will translatc the eight 9-bit bytes at confused _hytes
(first argument) according to the table at confusion_table
(third argument) and deposit the resultant eight 9-bit bytes
in confused_bytes (second argument), The lookup is done by
treating each character as an index into the table.

A list of most of the instructions used in Lucifer and

their meaning follows.

ada, q, xN add to A, 0, xN

ane. ¢, XN and to A, Q, xN

anaq and to AQ (two wordcs)

arg zero opcode (used for mvt table and
constants)

cmpa, q, XN compare A, Q, xN

csl combine bit strings left (three

word instruction)
descb a pseudoop which generates a bit

string descriptor for a csl

P W T Mg, omaeape

An Enciphering Module for Multics

instruction.
desc9a generates a 9-bit character descriptor
eaa, xN effective address to A (top half), xN
eppN effective pointer to pointer

register N

era, q, aq, xN exclusive or A, Q, AQ, xN

ersa, ersq exclusive or A, Q to storage

lda, q, aq load A, Q, AQ

11r long (AQ) left rotate

lls long (AQ) left shift

1rl long (AQ) riaght logical shift

1x1N load xN from lower half

mlr move character string left to righ-

(three word instruction)
mvt move with translation

(four word instruction)

ora, q, aq OR A, Q, AQ

orsa, g OR A, Q to storage
qls Q left shift

sba, g, xN subtract A, Q, xN
sta, q, aq store A, Q, AQ

stxN store xN

stz store zero

tmi transfer on minus
tnz transfer orn rot zero

tpl transfer on plus (including zero)

e T —— R —egen—. s

tra

ttf

Address modifiers appear

An Enciphering Module for Multics

field, For example

ldq

causes indexing by x2.

XN

*xN

XN*

As well
used whenever
] au
al
qu
ql
I ie
du
dl

or *N

or Nt®

bp|0,x2

page 66

unconditional transfer

transfer tally-runout flag off

after a comma in an address

index by index register N
indirect

indirect then index (i.e., add
index register to address in
indirect word).

index then indirect

as xN index modification, the following can be

XN appears above:

top of A

bottom of A

top of Q

bottom of Q
instruction counter

direct to upper

direct to lower

An Enciphering Module for Multics page 67

The indirect and tally modifiers add-delta (AD) and
subtract-delta (SD) take an indirect word. Add-delta
causes, after the instruction is executed on the operand
pointed to by the address field (bits 0 - 17; the operand
lies in the same segment as the AD word), the delta
(rightmost six bits) to be added to the address field. The
tally (bits 18 to 29) is decremented by one. If the tally
reaches zero the tally-runout indicator is set, but no fault
occurs, Subtract-delta, before executing the instruction,

subtracts the delta from the address field and increments

the tally by one.

An Enciphering Module for Multics page 68

BIBLIOGRAPHY

h Girdansky, M. B, "Cryptology, The Computer, and Data
Privacy," Computers and Automation, April, 1972, pp. 12-19,

2. Smith, J. L., 'the Design of Lucifer, a Cryptzgraphic
Device for Data Communications," IBM Research Report RC
3326, April 15, 1971,

3. Honeywell Information Systems, Inc. Honeywell 645
Processor Manual.

Related material:

4. Smith, J. L., UNotz, W. A., and Osseck, P. R., "An
Experimental Application of Cryptography to a Remotely
Accessed Data System," IBM Research Report RC 3508, August
18, 1971. (Also Proc ACM 25th Nat Conf., August, 1972, pp.
282-297,)

5. Feistel, H., "Cryptographic Coding for Databank Privacy,"
IBM Research Report RC 2827, March 18, 1970.

6. Feistel, B, Notz, W, A., and 8mith, J, L.,
"Cryptographic Techniques for Machine to Machine Data
Communications,"” IBM Research Report RC 3663, December 27,
1971.

